CBCS/ SEMESTER SYSTEM

(w.e.f. 2020-21 Admitted Batch)

B.A./B.Sc. MATHEMATICS

COURSE-II, THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY Time: 3Hrs Max.Marks:75 M

SECTION - A

Answer any <u>FIVE</u> questions. Each question carries <u>FIVE</u> marks 5 X 5 M=25 M

- 1. Find the equation of the plane through the point (-1,3,2) and perpendicular to the planes x+2y+2z=5 and 3x+3y+2z=8.
- 2. Find the bisecting plane of the acute angle between the planes 3x-2y-6z+2=0, -2x+y-2z-2=0.
- 3. Find the image of the point (2,-1,3) in the plane 3x-2y+z=9.
- 4. Show that the lines 2x + -4 = 0 = y + 2z and x + 3z 4 = 0, 2x + 5z 8 = 0 are coplanar.
- 5. A variable plane passes through a fixed point (a, b, c). It meets the axes in A,B,C. Show that thecentre of the sphere OABC lies on $ax^{-1}+by^{-1}+cz^{-1}=2$.
- 6. Show that the plane 2x-2y+z+12=0 touches the sphere x²+y²+z²-2x-4y+2z-3=0 and find thepoint of contact.
- 7. Find the equation to the cone which passes through the three coordinate axes and the lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and $\frac{x}{2} = \frac{y}{1} = \frac{z}{1}$
- 8. Find the equation of the enveloping cone of the sphere

 $x^{2} + y^{2} + z^{2} + 2x - 2y = 2$ with its vertex at (1, 1, 1).

SECTION - B

Answer ALL the questions. Each question carries TEN marks. 5 X 10 M = 50 M

9(a) A plane meets the coordinate axes in A, B, C. If the centroid of △ABC is

(a,b,c), show that the equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$.

(OR)

(b) A variable plane is at a constant distance p from the origin and meets the axesin

A,B,C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2}+y^{-2}+z^{-2}=16p^{-2}$.

10(a) Find the shortest distance between the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}; \ \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}.$$

(OR)

- (b) Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{x-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{x-4}{5}$ are coplanar. Also find their point of intersection and the plane containing the lines.
- 11 (a) Show that the two circles $x^2+y^2+z^2-y+2z=0$, x-y+z=2; $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 lie on the same sphere and find its equation.

(OR)

- (b) Find the equation of the sphere which touches the plane 3x+2y-z+2=0at (1,-2,1) and cuts orthogonally the sphere x²+y²+z²-4x+6y+4=0.
- 12 (a) Find the limiting points of the coaxial system of spheres $x^2+y^2+z^2-8x+2y-2z+32=0$, $x^2+y^2+z^2-7x+z+23=0$.

(OR)

- (b) Find the equation to the cone with vertex is the origin and whosebase curve is $x^2+y^2+z^2+2ux+d=0$.
- 13 (a) Prove that the equation $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$ represents a cone thattouches the coordinate planes and find its reciprocal cone.

(OR)

(b) Find the equation of the sphere $x^2+y^2+z^2-2x+4y-1=0$ having its generators parallel to the line x=y=z.